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Abstract

A subtraction game is an impartial combinatorial game involving a finite set 𝑆
of positive integers. The nim-sequence 𝑆 associated with this game is ultimately
periodic. In this paper, we study the nim-sequence 𝑆∪{𝑐} where𝑆 is fixed and 𝑐 varies.
We conjecture that there is a multiple 𝑞 of the period of 𝑆 , such that for sufficiently
large 𝑐, the pre-period and period of 𝑆∪{𝑐} are linear in 𝑐 if 𝑐 modulo 𝑞 is fixed. We
prove it in several cases.

We also give new examples with period 2 inspired by this conjecture.

1. Introduction
Let 𝑆 be a finite set of positive integers. The (finite) subtraction game SUB(𝑆) is a two-player game

involving a heap of 𝑛 ≥ 0 counters. The two players move alternately, subtracting some 𝑠 ∈ 𝑆 counters. The
player who cannot make a move loses.

We always write the subtraction set as 𝑆 = {𝑠1,… , 𝑠𝑘} with an order 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑘. Denote by(𝑛) = 𝑆(𝑛) the nim-value (or Grundy-value), i.e.,

(𝑛) = mex {(𝑛 − 𝑠) ∶ 𝑠 ∈ 𝑆, 𝑠 ≤ 𝑛}, ∀𝑛 ≥ 0,

where mex means the minimal non-negative integer not in the set. The sequence  = 𝑆 = {(𝑛)}𝑛≥0 is
called the nim-sequence (or Sprague-Grundy sequence).

If 𝑑 = gcd(𝑆) = gcd {𝑠 ∶ 𝑠 ∈ 𝑆} > 1 and 𝑆′ = {𝑠∕𝑑 ∶ 𝑠 ∈ 𝑆}, then 𝑆(𝑛) = 𝑆′(𝑚), where
𝑚𝑑 ≤ 𝑛 < (𝑚 + 1)𝑑. Hence we may assume that gcd(𝑆) = 1 if necessary.

Definition 1. A subtraction game SUB(𝑆) (or its nim-sequence ) is called ultimately periodic, if there exist
integers 𝑝 ≥ 1 and 𝓁 ≥ 0 such that (𝑛+ 𝑝) = (𝑛) for all 𝑛 ≥ 𝓁. The minimal 𝑝 is called the period and the
minimal 𝓁 is called the pre-period.

Since (𝑛) ≤ 𝑘, one can show that  is ultimately periodic with 𝓁, 𝑝 ≤ (𝑘 + 1)𝑠𝑘 by the pigeonhole
principle, see [1, Theorem 7.33].

Since (𝑛 + 𝑠𝑘) only depends on (𝑛),(𝑛 + 1),… ,(𝑛 + 𝑠𝑘 − 1), we have the following lemma to
determine the period and pre-period.

Lemma 1.1 ([1, Corollary 7.34]). The minimal integers 𝓁 ≥ 0, 𝑝 ≥ 1 such that (𝑛) = (𝑛 + 𝑝) for
𝓁 ≤ 𝑛 < 𝓁 + 𝑠𝑘 are the pre-period and period of SUB(𝑆) respectively.

The nim-sequence  is known when 𝑘 ≤ 2. For 𝑘 ≥ 3, even the pre-period and the period are not known
in general. In §§2-3, we will recall some known results with 𝑘 ≤ 3, and give several new results with 𝑘 = 3.
We also give the nim sequence when 𝑘 ≥ 4 and 𝑆 have a special form in §4. Based on these results and some
computer-assistant calculations, we propose a conjecture on the inductive behavior of 𝓁 and 𝑝 as follows:
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Conjecture 1.2 (Asymptotic linearity). Fix a subtraction set 𝑆. Then the pre-period and the period of the
SUB(𝑆 ∪ {𝑐}) grow at most linearly in 𝑐.

Moreover, the pre-period and the period should increase piecewise linearly on 𝑐:

Conjecture 1.3 (Piecewise linearity). Fix a subtraction set 𝑆. There are

• positive integers 𝑞,𝑁;

• integers 𝛼𝑟, 𝛽𝑟, 𝜆𝑟, 𝜇𝑟 for each 0 ≤ 𝑟 < 𝑞,

such that if 𝑐 ≥ 𝑁 and 𝑐 ≡ 𝑟 mod 𝑞,

• the pre-period of SUB(𝑆 ∪ {𝑐}) is 𝛼𝑟𝑐 + 𝛽𝑟;

• the period of SUB(𝑆 ∪ {𝑐}) is 𝜆𝑟𝑐 + 𝜇𝑟.

In many cases, 𝑞 is the period of SUB(𝑆).

Theorem 1.4. Conjecture 1.3 holds in the following cases:

1. 1 ∈ 𝑆 and the elements of 𝑆 are all odd;
2. 𝑆 = {1, 𝑏};
3. 𝑆 = {𝑎, 2𝑎};
4. 𝑆 = {𝑎, 𝑎 + 1,… , 𝑏 − 1, 𝑏}.

We will also give new ultimately bipartite nim-sequences inspired by this conjecture. See Theorem 6.3.

Remark 1. Once Conjecture 1.3 holds with effective 𝑞,𝑁 , then one can get the pre-period and period of
SUB(𝑆 ∪ {𝑐}) for all 𝑐 effectively. That is because we only need to calculate the pre-periods and periods of
SUB(𝑆 ∪ {𝑐}) for 𝑐 ≤ 𝑁 + 2𝑞.

Remark 2. Denote by (𝑛) ∈ {0, 1} the sign of (𝑛). Then (𝑛) = 1 if and only if the starting position
with heap size 𝑛 is a win for the player to move. One can easily see that  is ultimately periodic with
pre-period ≤ 𝓁, period ≤ 𝑝 and both of them ≤ 2𝑠𝑘 . We can propose a similar conjecture on the -sequence
of SUB(𝑆 ∪ {𝑐}), which is a consequence of Conjecture 1.3.

Remark 3. In [2], Althöfer and Bültermann studied the pre-period and period of the -sequence of SUB(𝑆),
where all elements of 𝑆 are linear in a variable 𝑠. For example, they conjectured that SUB(𝑠, 4𝑠, 12𝑠+1, 16𝑠+
1) has no pre-period and period 56𝑠3 + 52𝑠2 + 9𝑠 + 1. Our conjecture is in a different direction since we do
not require the subtraction set 𝑆 ∪ {𝑐} to have a special form.

Let’s introduce some notations we will use. Let 𝑡, 𝑎 be non-negative integers and  = (ℎ1⋯ℎ𝑘) a
sequence of integers with finite length. As usual, we denote by 𝑎𝑡 the sequence 𝑎⋯ 𝑎 (𝑡 copies of 𝑎) and 𝑡

the sequence ⋯ (𝑡 copies of ). Denote by  the infinite-length sequence with periodic sequence ,
i.e.,  = ⋯. For example, if a nim-sequence  has pre-period 𝓁 and period 𝑝, then we can write

 = (0)(1)(2)⋯ = (0)⋯(𝓁 − 1)(𝓁)⋯(𝓁 + 𝑝 − 1).

We will not give detailed proofs of all nim-sequences, since these proofs tend to involve lengthy and tedious
inductions.
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2. The case 𝑆 = {1, 𝑏, 𝑐}
In this section, we will consider the nim-sequences of 𝑆 = {1, 𝑏, 𝑐}, where 1 < 𝑏 < 𝑐. Let’s recall some

classical cases first.

Lemma 2.1. Let 𝑝 be the period of SUB(𝑆). Let 𝑆′ = 𝑆 ∪ {𝑥 + 𝑝𝑡} for some 𝑥 ∈ 𝑆 and 𝑡 ≥ 1. If the
pre-period of SUB(𝑆) is zero, then 𝑆′ = 𝑆 .

PROOF. Certainly 𝑆′(0) = 𝑆(0) = 0. Suppose that 𝑆′(𝑖) = 𝑆(𝑖) for 0 ≤ 𝑖 ≤ 𝑛 − 1. If 𝑛 < 𝑥 + 𝑝𝑡, then

𝑆′(𝑛) = mex {𝑆(𝑛 − 𝑠) ∶ 𝑠 ∈ 𝑆, 𝑠 ≤ 𝑛} = 𝑆(𝑛).
If 𝑛 ≥ 𝑥 + 𝑝𝑡, then

𝑆′(𝑛) = mex {𝑆(𝑛 − 𝑥 − 𝑝𝑡),𝑆(𝑛 − 𝑠) ∶ 𝑠 ∈ 𝑆, 𝑠 ≤ 𝑛}
= mex {𝑆(𝑛 − 𝑥),𝑆(𝑛 − 𝑠) ∶ 𝑠 ∈ 𝑆, 𝑠 ≤ 𝑛} = 𝑆(𝑛).

The lemma then follows by induction.

Example 2.2. Certainly, {1} = 01. If 1 ∈ 𝑆 and all elements of 𝑆 are odd, then 𝑆 = 01 by applying
Lemma 2.1 several times. This condition is also necessary for 𝑆 = 01, see [4].

Example 2.3. Let 𝑆 = {𝑎, 𝑐} with 1 ≤ 𝑎 < 𝑐. Write 𝑐 = 𝑎𝑡 + 𝑟, 0 ≤ 𝑟 < 𝑎. Then

𝑆 =

{
(0𝑎1𝑎)𝑡∕20𝑟2𝑎−𝑟1𝑟, if 𝑡 is even;
(0𝑎1𝑎)(𝑡+1)∕22𝑟, if 𝑡 is odd,

𝓁 = 0 and 𝑝 = 𝑐 + 𝑎 or 2𝑎. See [3] and [2, Theorem 2].

Example 2.4. 1. Let 𝑆 = {1, 𝑏, 𝑐} with odd 𝑏 and 1 < 𝑏 < 𝑐. Note that {1,𝑏} =  where  = 01. We
have

𝑐 𝑆 𝓁 𝑝

odd  0 2
even 𝑐∕2(23)(𝑏−1)∕22 0 𝑐 + 𝑏

See [5, Theorem 4].
2. Let 𝑆 = {1, 2, 𝑐} with 𝑐 > 2. Note that {1,2} =  where  = 012. Write 𝑐 = 3𝑡 + 𝑟, 0 ≤ 𝑟 < 3. Then

𝑟 𝑆 𝓁 𝑝

0 (012)𝑡3 0 𝑐 + 1
1, 2 012 0 3

3. Let 𝑆 = {1, 4, 𝑐} with 𝑐 > 4. Note that {1,4} =  where  = 01012. Write 𝑐 = 5𝑡 + 𝑟, 0 ≤ 𝑟 < 5.
Then

𝑟, 𝑐 𝑆 𝓁 𝑝

𝑟 = 0, 𝑐 = 5  323 0 8
𝑟 = 0, 𝑐 > 5 𝑡 323013𝑡−1012012 𝑐 + 6 𝑐 + 1
𝑟 = 1, 4  0 5
𝑟 = 2 𝑡 012 0 𝑐 + 1
𝑟 = 3 𝑡+1 32 0 𝑐 + 4

S. Zhang: Preprint. (September 23, 2023) Page 3 of 10



On the linearity of the periods of subtraction games

Proposition 2.5. Let 𝑆 = {1, 𝑏, 𝑐} with even 𝑏 = 2𝑘 ≥ 6. Write 𝑐 = 𝑡(𝑏 + 1) + 𝑟 with 0 ≤ 𝑟 ≤ 𝑏, 𝑡 ≥ 1.
1. If 𝑟 = 1, 𝑏, then 𝓁 = 0 and 𝑝 = 𝑏 + 1.
2. If 3 ≤ 𝑟 ≤ 𝑏 − 1 is odd, then 𝓁 = 0 and 𝑝 = 𝑐 + 𝑏.
3. If 𝑟 = 𝑏 − 2, then 𝓁 = 0 and 𝑝 = 𝑐 + 1.
4. If 𝑐 = 𝑏 + 1, then 𝓁 = 0, 𝑝 = 2𝑏;
5. If 𝑐 > 𝑏+ 1, 0 ≤ 𝑟 ≤ 𝑏− 4 is even and 𝑡+ 𝑟∕2 ≥ 𝑘, then 𝓁 =

(
𝑏−𝑟
2 − 1

)
(𝑐 + 𝑏+ 2) − 𝑏 and 𝑝 = 𝑐 + 1.

6. If 𝑐 > 𝑏 + 1, 0 ≤ 𝑟 ≤ 𝑏 − 4 is even and 𝑡 + 𝑟∕2 ≤ 𝑘 − 1, then 𝓁 = 𝑡(𝑐 + 𝑏 + 2) − 𝑏. If 𝑡 + 𝑟∕2 < 𝑘 − 1,
then 𝑝 = 𝑐 + 𝑏; if 𝑡 + 𝑟∕2 = 𝑘 − 1, then 𝑝 = 𝑏 − 1.

PROOF. Note that {1,𝑏} =  where  = (01)𝑘2.
1. In this case,  = , 𝓁 = 0 and 𝑝 = 𝑏 + 1 by Lemma 2.1.
2. In this case,  = 𝑡+1 (32)(𝑟−1)∕2, 𝓁 = 0 and 𝑝 = 𝑐 + 𝑏.
3. In this case,  = 𝑡 (01)𝑘−12, 𝓁 = 0 and 𝑝 = 𝑐 + 1.
4. In this case,  = (01)𝑘(23)𝑘 = 3(23)𝑘−1, 𝓁 = 0 and 𝑝 = 2𝑏.
5. Write 𝑟 = 2𝑣. If 1 ≤ 𝑣 ≤ 𝑘 − 2, the leading (𝑐 + 1)(𝑘 − 𝑣 + 1) terms of  are (the

:::::
waved

::::
part is the

first periodic nim-sequence)

𝑖 ((𝑐 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 ≤ 𝑐

0 𝑡, (01)𝑣2
1 (32)𝑘−𝑣−1(01)𝑣+12,𝑡−1, (01)𝑣0
2 1(01)𝑘−𝑣−22(01)𝑣+12, (32)𝑘−𝑣−2(01)𝑣+22,𝑡−2, (01)𝑣0

1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)𝑘−𝑣−𝑖+12(01)𝑣+𝑖−20,𝑖
1(01)𝑘−𝑣−𝑖2(01)𝑣+𝑖−12, (32)𝑘−𝑣−𝑖(01)𝑣+𝑖2,𝑡−𝑖, (01)𝑣0
1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)22(01)𝑘−30, 1(01)2(01)𝑘−22,𝑘 − 𝑣 − 1
(32)(01)𝑘−12,𝑡−𝑘+𝑣+1, (01)𝑣0

:::::::::::::::::::::::::

1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)2(01)𝑘−20, 1
:::::::::::::::::::::::::::::::::::::

2(01)𝑘−12,
𝑘 − 𝑣 𝑡−𝑘+𝑣−1, (01)𝑣0.

If 𝑣 = 0, the leading (𝑐 + 1)(𝑘 + 1) terms of  are

𝑖 ((𝑐 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 ≤ 𝑐

0 𝑡3
1 (23)𝑘−1013,𝑡−10
2 1(01)𝑘−22(01)2, (32)𝑘−2(01)22,𝑡−20

1(01)𝑘−22(01)0,⋯ , 1(01)𝑘−𝑖+12(01)𝑖−20, 1(01)𝑘−𝑖2(01)𝑖−12,𝑖
(32)𝑘−𝑖(01)𝑖2,𝑡−𝑖0
1(01)𝑘−22(01)0,⋯ , 1(01)22(01)𝑘−30, 1(01)12(01)𝑘−22,𝑘 − 1
(32)(01)𝑘−12,𝑡−𝑘+10

:::::::::::::::::

𝑘 1(01)𝑘−22(01)0,⋯ , 1(01)12(01)𝑘−20, 1
::::::::::::::::::::::::::::::::::

2(01)𝑘−12,𝑡−𝑘+10.

In both cases, we have 𝓁 =
(
𝑏−𝑟
2 − 1

)
(𝑐 + 𝑏 + 2) − 𝑏, 𝑝 = 𝑐 + 1 and

 = ⋯ 2(01)𝑘−1
(
2(01)𝑘

)𝑡−𝑘+𝑣+1(2(01)𝑘−1)𝑘−𝑣−1.
6. If 1 ≤ 𝑣 ≤ 𝑘 − 2, the leading (𝑐 + 1)(𝑡 + 2) terms of  are
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𝑖 ((𝑐 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 ≤ 𝑐

0 𝑡 (01)𝑣2
1 (32)𝑘−𝑣−1(01)𝑣+12,𝑡−1(01)𝑣0
2 1(01)𝑘−𝑣−22(01)𝑣+12, (32)𝑘−𝑣−2(01)𝑣+22,𝑡−2(01)𝑣0

1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)𝑘−𝑣−𝑖+12(01)𝑣+𝑖−20,𝑖
1(01)𝑘−𝑣−𝑖2(01)𝑣+𝑖−12, (32)𝑘−𝑣−𝑖(01)𝑣+𝑖2,𝑡−𝑖(01)𝑣0
1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)𝑘−𝑣−𝑡+22(01)𝑣+𝑡−30,𝑡 − 1
1(01)𝑘−𝑣−𝑡+12(01)𝑣+𝑡−22, (32)𝑘−𝑣−𝑡+1(01)𝑣+𝑡−12,1(01)𝑣0
1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)𝑘−𝑣−𝑡+12(01)𝑣+𝑡−20,𝑡
1(01)𝑘−𝑣−𝑡2(01)𝑣+𝑡−12, (32)𝑘−𝑣−𝑡(01)𝑣+𝑡2, (01)𝑣0

::::::::::::::::::::

1(01)𝑘−𝑣−22(01)𝑣+10,… , 1(01)𝑘−𝑣−𝑡+12(01)𝑣+𝑡−20
:::::::::::::::::::::::::::::::::::::::::::

,
𝑡 + 1

1(01)𝑘−𝑣−𝑡2(01)𝑣+𝑡−10, 1(01)𝑘−𝑣−𝑡−12(01)𝑣+𝑡
::::::::::::::::::::::::::::::::::::::

2, (32)𝑘−𝑣−𝑡−101⋯

Therefore, 𝓁 = 𝑡(𝑐 + 𝑏 + 2) − 𝑏. If 𝑡 + 𝑣 < 𝑘 − 1, then 𝑝 = 𝑐 + 𝑏 and

 = ⋯ 2(32)𝑘−𝑣−𝑡−1(01)𝑣+𝑡2
(
(01)𝑘−12

)𝑡(01)𝑣+𝑡.
If 𝑡 + 𝑣 = 𝑘 − 1, then 𝑝 = 𝑏 − 1 and  = ⋯ 2(01)𝑘−1.

If 𝑣 = 0, the leading (𝑐 + 1)(𝑡 + 2) terms of  are

𝑖 ((𝑐 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 ≤ 𝑐

0 𝑡 3
1 (23)𝑘−1013,𝑡−10
2 1(01)𝑘−22(01)2, (32)𝑘−2(01)22,𝑡−20

1(01)𝑘−22(01)0,⋯ , 1(01)𝑘−𝑖+12(01)𝑖−20, 1(01)𝑘−𝑖2(01)𝑖−12,𝑖
(32)𝑘−𝑖(01)𝑖2,𝑡−𝑖0
1(01)𝑘−22(01)0,⋯ , 1(01)𝑘−𝑡+22(01)𝑡−30, 1(01)𝑘−𝑡+12(01)𝑡−22,𝑡 − 1
(32)𝑘−𝑡+1(01)𝑡−12,10
1(01)𝑘−22(01)0,⋯ , 1(01)𝑘−𝑡+12(01)𝑡−20, 1(01)𝑘−𝑡2(01)𝑡−12,𝑡
(32)𝑘−𝑡(01)𝑡20

::::::::::

1(01)𝑘−22(01)0,⋯ , 1(01)𝑘−𝑡2(01)𝑡−10, 1(01)𝑘−𝑡−12(01)𝑡0
:::::::::::::::::::::::::::::::::::::::::::::::::

,
𝑡 + 1

1(01)𝑘−𝑡−12(01)𝑡
::::::::::::::

2, (32)𝑘−𝑡−101⋯

Therefore, 𝓁 = 𝑡(𝑐 + 𝑏 + 2) − 𝑏. If 𝑡 < 𝑘 − 1, then 𝑝 = 𝑐 + 𝑏 and

 = ⋯ 2(32)𝑘−𝑡−1(01)𝑡2
(
(01)𝑘−12

)𝑡(01)𝑡.
If 𝑡 = 𝑘 − 1, then 𝑝 = 𝑏 − 1 and  = ⋯ 2(01)𝑘−1.

Remark 4. The case 𝑐 < 4𝑏 is studied in [5], but there are some incorrect data. In Table 1, 𝑝 = 𝑎 − 1 if
𝑟 = 𝑎 − 3 ≥ 3. In Table B.11, 𝑛0 = 𝑎 + 2𝑏 + 4 if 2 ≤ 𝑟 ≤ 𝑎 − 4. In Table B.12, 𝑛0 = 2𝑎 + 3𝑏 + 6 if
3 ≤ 𝑟 ≤ 𝑎 − 5. The corresponding pre-period nim-values also need to be modified.
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3. The case 𝑆 = {𝑎, 2𝑎, 𝑐}
Proposition 3.1. Let 𝑆 = {𝑎, 2𝑎, 𝑐} with 2𝑎 < 𝑐. Write 𝑐 = 3𝑎𝑡 + 𝑟 with 0 ≤ 𝑟 < 3𝑎. Then

𝓁 =

{
𝑐 + 𝑎 − 𝑟, 0 < 𝑟 < 𝑎;
0, otherwise,

𝑝 =

⎧⎪⎨⎪⎩
3𝑎∕2, 𝑟 = 𝑎∕2;
3𝑎, 𝑎∕2 < 𝑟 ≤ 2𝑎;
𝑐 + 𝑎, otherwise.

PROOF. Denote by  = 0𝑎1𝑎2𝑎. Then {𝑎,2𝑎} =  with period 𝑞 = 3𝑎. Write 𝑎 = 2𝑘−1 if 𝑎 is odd; 𝑎 = 2𝑘
if 𝑎 is even.

1. If 𝑎 ≤ 𝑟 ≤ 2𝑎, then  = , 𝓁 = 0 and 𝑝 = 3𝑎.
2. If 𝑟 = 0, then  = 𝑡3𝑎, 𝓁 = 0 and 𝑝 = 𝑐 + 𝑎.
3. If 0 < 𝑟 < 𝑘, then

 = 𝑡0𝑟3𝑎−𝑟(1𝑟0𝑎−𝑟2𝑟1𝑎−𝑟0𝑟2𝑎−𝑟)𝑡1𝑟0𝑟3𝑎−2𝑟2𝑟,

𝓁 = 𝑐 + 𝑎 − 𝑟 and 𝑝 = 𝑐 + 𝑎.
4. If 𝑘 ≤ 𝑟 < 𝑎, then

 = 𝑡0𝑟3𝑎−𝑟1𝑟0𝑎−𝑟2𝑟1𝑎−𝑟0𝑟2𝑎−𝑟,

𝓁 = 𝑐 + 𝑎 − 𝑟 and 𝑝 = 3𝑎 or 3𝑎∕2.
5. If 𝑟 > 2𝑎, then  = 𝑡+13𝑟−2𝑎, 𝓁 = 0 and 𝑝 = 𝑐 + 𝑎.

Remark 5. The pre-period and period of SUB(𝑆) are not easy to determine, even if 𝑆 = {𝑠1, 𝑠2, 𝑠3} is a
3-element set. In [2, §4, Conjecture (i)], Althofer and Bultermann conjectured that the period of SUB(𝑆) is
bounded by a quadratic polynomial in 𝑠3. Ho also studied SUB(𝑆) for 3-element set 𝑆 in [5].

4. The case 𝑆 contains successive numbers
Proposition 4.1. Let 𝑆 = {𝑎, 𝑎 + 1,… , 𝑏 − 1, 𝑏, 𝑐} with 𝑎 < 𝑏 < 𝑐. Write 𝑐 = 𝑡(𝑎+𝑏)+𝑟 with 0 ≤ 𝑟 < 𝑎+𝑏.
Then

𝓁 = 0, 𝑝 =

⎧⎪⎨⎪⎩
𝑎 + 𝑏, 𝑎 ≤ 𝑟 ≤ 𝑏;
𝑐 + 𝑎, 𝑟 = 0 or 𝑟 > 𝑏;
𝑐 + 𝑏, 0 < 𝑟 < 𝑎.

PROOF. Write 𝑏 = 𝑎𝑘+ 𝑠, 0 ≤ 𝑠 ≤ 𝑎− 1 and denote by  = 0𝑎1𝑎⋯ 𝑘𝑎(𝑘+ 1)𝑠, then {𝑎,𝑎+1,…,𝑏} =  with
period 𝑞 = 𝑎 + 𝑏 = 𝑎(𝑘 + 1) + 𝑠.

1. If 𝑎 ≤ 𝑟 ≤ 𝑏, then  = , 𝓁 = 0 and 𝑝 = 𝑎 + 𝑏 by Lemma 2.1.
2. If 𝑟 = 0, then

 = 𝑡(𝑘 + 1)𝑎−𝑠(𝑘 + 2)𝑠.

If 𝑟 > 𝑏 and 𝑟 + 𝑠 > 𝑞, then

 = 𝑡+1(𝑘 + 1)𝑎−𝑠(𝑘 + 2)𝑟+𝑠−𝑞.

If 𝑟 > 𝑏 and 𝑟 + 𝑠 ≤ 𝑞, then

 = 𝑡+1(𝑘 + 1)𝑎+𝑟−𝑞.

In all cases, we have 𝓁 = 0 and 𝑝 = 𝑐 + 𝑎.
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3. If 0 < 𝑟 < 𝑎 − 2𝑠, then

 =𝑡, 0𝑟(𝑘 + 1)𝑎−𝑠−𝑟(𝑘 + 2)𝑠, 1𝑟(𝑘 + 2)𝑎−𝑠−𝑟(𝑘 + 3)𝑠,⋯,

(𝑘 − 1)𝑟(2𝑘)𝑎−𝑠−𝑟(2𝑘 + 1)𝑠, 𝑘𝑟(2𝑘 + 1)𝑠.

If 𝑎 − 2𝑠 ≤ 𝑟 < 𝑎 − 𝑠, then

 =𝑡, 0𝑟(𝑘 + 1)𝑎−𝑠−𝑟(𝑘 + 2)𝑠, 1𝑟(𝑘 + 2)𝑎−𝑠−𝑟(𝑘 + 3)𝑠,⋯,

(𝑘 − 1)𝑟(2𝑘)𝑎−𝑠−𝑟(2𝑘 + 1)𝑠, 𝑘𝑟(2𝑘 + 1)𝑎−𝑠−𝑟(2𝑘 + 2)2𝑠+𝑟−𝑎.

If 𝑎 − 𝑠 ≤ 𝑟 < 𝑎, then

 =𝑡, 0𝑟(𝑘 + 2)𝑎−𝑟, 1𝑟(𝑘 + 3)𝑎−𝑟,⋯ (𝑘 − 1)𝑟(2𝑘 + 1)𝑎−𝑟, 𝑘𝑟(𝑘 + 1)𝑠,

In all cases, we have 𝓁 = 0 and 𝑝 = 𝑐 + 𝑏.

5. Piecewise linearity of pre-periods and periods
Let 𝑆 be a fixed subtraction set. Denote by 𝑆 the nim-sequence of 𝑆 with pre-period 𝓁 and period 𝑝.

Denote by 𝑆∪{𝑐} the nim-sequence of 𝑆 ∪ {𝑐} with pre-period 𝓁𝑐 and period 𝑝𝑐 . The following examples
are due to computer-assistant calculations.

Example 5.1. Let 𝑆 = {6, 17}. Then 𝑆 = 061605215 with period 23. For 116 ≤ 𝑐 ≤ 500, we have

𝓁𝑐 =

{
(9 − 2𝜆)𝑐 + (147 − 35𝜆), 𝑐 ≡ 𝜆 or 𝜆 + 12 mod 23, 𝜆 ∈ [0, 4];
0, otherwise,

𝑝𝑐 =

⎧⎪⎨⎪⎩
𝑐 + 6, 𝑐 ≡ 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16 mod 23;
𝑐 + 17, 𝑐 ≡ 7, 8, 9, 10, 11, 18, 19, 20, 21, 22 mod 23;
23, 𝑟 = 6 or 17.

See https: // ruhuasiyu. github. io/ nim/ example5. 1. html .

Example 5.2. Let 𝑆 = {3, 5, 8}. Then 𝑆 = 03132332 with period 11. For 13 ≤ 𝑐 ≤ 500, we have

𝓁𝑐 =

{
𝑐 + 18, 𝑐 ≡ 1, 2 mod 11;
0, otherwise,

𝑝𝑐 =

⎧⎪⎨⎪⎩
𝑐 + 3, 𝑐 ≡ 0, 1, 9, 10 mod 11;
𝑐 + 25, 𝑐 ≡ 2 mod 11;
11, otherwise.

See https: // ruhuasiyu. github. io/ nim/ example5. 2. html .

Example 5.3. Let 𝑆 = {2, 3, 5, 7}. Then 𝑆 = 021222324 with period 9. For 11 ≤ 𝑐 ≤ 500, we have

𝓁𝑐 =

⎧⎪⎨⎪⎩
2𝑐 − 4, 𝑐 ≡ 1 mod 18;
𝑐 + 5, 𝑐 ≡ 10 mod 18;
0, otherwise,

𝑝𝑐 =

⎧⎪⎨⎪⎩
𝑐 + 2, 𝑐 ≡ 0, 8, 9, 10, 17 mod 18;
4, 𝑐 ≡ 1 mod 18;
9, otherwise.

See https: // ruhuasiyu. github. io/ nim/ example5. 3. html .
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Example 5.4. Let 𝑆 = {4, 11, 12, 14}. Then 𝑆 = ⋯ 20414033132303312 with pre-period 24 and period
25. Write 𝑟 ≡ 𝑐 mod 25, 0 ≤ 𝑟 < 25. For 101 ≤ 𝑐 ≤ 500, we have

𝓁𝑐 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

4𝑐 + 91, 𝑟 = 0; 2𝑐 + 8, 𝑟 = 1; 2𝑐 + 34, 𝑟 = 2;
𝑐 − 6, 𝑟 = 3; 2𝑐 + 16, 𝑟 = 4; 2𝑐 + 36, 𝑟 = 5;
3𝑐 + 4, 𝑟 = 6; 𝑐 + 26, 𝑟 = 9; 𝑐 + 12, 𝑟 = 12;
0, 𝑟 = 13; 2𝑐 + 37, 𝑟 = 18; 𝑐 + 14, 𝑟 = 19;
𝑐 + 2, 𝑟 = 20; 12, 𝑟 = 21; 3𝑐 + 5, 𝑟 = 22;
𝑐 + 52, 𝑟 = 23; 2𝑐 + 33, 𝑟 = 24; 24, otherwise,

𝑝𝑐 =

⎧⎪⎨⎪⎩
𝑐 + 37, 𝑟 = 0, 1, 9, 18; 𝑐 + 14, 𝑟 = 2, 10;
𝑐 + 11, 𝑟 = 6, 7, 8, 15, 16, 17; 𝑐 + 12, 𝑟 = 13;
2𝑐 + 41, 𝑟 = 19; 𝑐 + 4, 𝑟 = 21;
𝑐 + 28, 𝑟 = 22; 25, otherwise.

See https: // ruhuasiyu. github. io/ nim/ example5. 4. html .

Based on these observations, we propose the Conjecture 1.3. By the results in §§2-4, Conjecture 1.3 is
valid in the cases mentioned in Theorem 1.4.

PROOF (PROOF OF THEOREM 1.4). 1. The period of SUB(𝑆) is 𝑞 = 2. If 𝑐 is odd, then 𝑆∪{𝑐} = 01. If
𝑐 is even, denote by 𝑠 the maximal number in 𝑆. Then

𝑆∪{𝑐} = (01)𝑐∕2(23)(𝑠−1)∕22,

𝓁𝑐 = 0 and 𝑝𝑐 = 𝑐 + 𝑠.
2. follows from Example 2.4 and Proposition 2.5.
3. follows from Proposition 3.1.
4. follows from Proposition 4.1.

6. Ultimately bipartite nim-sequences
A subtraction game (or its nim-sequence) is said to be ultimately bipartite if the period is 2. It is known

that 𝑆 is ultimately bipartite with pre-period 0 if and only if 1 ∈ 𝑆 and all elements in 𝑆 are odd, see [4].

Example 6.1. Let 𝑎 ≥ 3 be an odd integer. If 𝑆 is one of the following:

• 𝑆 = {3, 5, 9,… , 2𝑎 + 1};

• 𝑆 = {3, 5, 2𝑎 + 1};

• 𝑆 = {𝑎, 𝑎 + 2, 2𝑎 + 3};

• 𝑆 = {𝑎, 2𝑎 + 1, 3𝑎},

then SUB(𝑆) is ultimately bipartite. See [4, Theorem 2] and [5, Theorem 5].

Lemma 6.2. If  = 𝑆 is ultimately bipartite, then all elements in 𝑆 are odd.
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PROOF. As shown in [4, Theorem 3], there exists an integer 𝑛0 such that for 𝑛 ≥ 𝑛0, (𝑛) = 0 if 𝑛 is even;(𝑛) = 1 if 𝑛 is odd. Take an even number 𝑛 ≥ 𝑛0 + 𝑠𝑘, where 𝑠𝑘 is the maximal element in 𝑆. Then

0 = (𝑛) = mex {(𝑛 − 𝑠) ∶ 𝑠 ∈ 𝑆},

which implies that (𝑛 − 𝑠) = 1 for all 𝑠 ∈ 𝑆. Hence all 𝑠 ∈ 𝑆 are odd.

We have the following new ultimately bipartite subtraction sets inspired by our conjecture.

Theorem 6.3. Let 𝑎 ≥ 3 be an odd integer and 𝑡 ≥ 1. The subtraction game SUB(𝑆) is ultimately bipartite
in the following cases:

1. 𝑆 = {𝑎, 𝑎 + 2, (2𝑎 + 2)𝑡 + 1};
2. 𝑆 = {𝑎, 2𝑎 + 1, (3𝑎 + 1)𝑡 − 1};
3. 𝑆 = {𝑎, 2𝑎 − 1, (3𝑎 − 1)𝑡 + 𝑎 − 2}.

PROOF. Let 𝑐 be the maximal element in 𝑆. Write 𝑎 = 2𝑘 + 1.
1. If 𝑘 ≥ 2, then the leading (𝑘 + 1)(𝑎 + 1)(2𝑡 + 1) terms of  are

𝑖 ((𝑎 + 1)(2𝑡 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 < (𝑎 + 1)(2𝑡 + 1) = 𝑐 + 𝑎

0𝑎1 [ 1𝑎−122 0𝑎1 ]𝑡−1,0
1𝑎−122 02𝑎−3331

030𝑎−21 [ 01𝑎−221 020𝑎−21 ]𝑡−1,1
01𝑎−221 0202𝑎−5321

(01)𝑖−1030𝑎−2𝑖1 [(01)𝑖−101𝑎−2𝑖21 (01)𝑖−1020𝑎−2𝑖1 ]𝑡−1,𝑖
(01)𝑖−101𝑎−2𝑖21 (01)𝑖−10202𝑎−2𝑖−3321

(01)𝑘−203031 [ (01)𝑘−201321 (01)𝑘−202031 ]𝑡−1,𝑘 − 1
(01)𝑘−201321 (01)𝑘−2020321

[ (01)𝑘−10301 (01)𝑘−10121]𝑡−1 (01)𝑘−10301
::
,

𝑘
(01)𝑘−10101 (01)𝑘−10101.

Hence the pre-period is

𝓁 = (𝑘 + 1)(𝑐 + 𝑎) − 2𝑎 − 4 = (𝑘 + 1)𝑐 + 2𝑘2 − 𝑘 − 5

and the period is 𝑝 = 2. The case 𝑎 = 3 will be shown in Case 3.
2. The leading (𝑘 + 1)((3𝑎 + 1)𝑡 + 𝑎 − 1) terms of  are

𝑖 (((3𝑎 + 1)𝑡 + 𝑎 − 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 < (3𝑎 + 1)𝑡 + 𝑎 − 1 = 𝑐 + 𝑎

0 [ 0𝑎 1𝑎 02𝑎−11 ]𝑡, 3𝑎−1
[ 020𝑎−2 101𝑎−2 (01)132𝑎−31 ]𝑡−1,1

020𝑎−2 101𝑎−2 (01)02𝑎−31 (01)3𝑎−3
[(01)𝑖−1020𝑎−2𝑖 1(01)𝑖−101𝑎−2𝑖 (01)𝑖32𝑎−2𝑖−11]𝑡−1,𝑖
(01)𝑖−1020𝑎−2𝑖 1(01)𝑖−101𝑎−2𝑖 (01)𝑖02𝑎−2𝑖−11 (01)𝑖3𝑎−2𝑖−1
[ (01)𝑘−20203 1(01)𝑘−2013 (01)𝑘−13221 ]𝑡−1,𝑘 − 1
(01)𝑘−20203 1(01)𝑘−2013 (01)𝑘−10221 (01)𝑘−132

[ (01)𝑘−1020 1(01)𝑘−101 (01)𝑘31 ]𝑡−1,𝑘
(01)𝑘−1020

:
1
:
(01)𝑘−101 (01)𝑘01 (01)𝑘.
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Hence the pre-period is

𝓁 = (𝑘 + 1)(𝑐 + 𝑎) − 3𝑎 − 1 = (𝑘 + 1)𝑐 + 2𝑘2 − 3𝑘 − 3

and the period is 𝑝 = 2.
(3) The leading (𝑘 + 1)(3𝑎 − 1)(𝑡 + 1) terms of  are

𝑖 ((3𝑎 − 1)(𝑡 + 1)𝑖 + 𝑗
)
, 0 ≤ 𝑗 < (3𝑎 − 1)(𝑡 + 1) = 𝑐 + 2𝑎 + 1

0 [0𝑎−1 01𝑎−1 12𝑎−1 ]𝑡, 0𝑎−23 31𝑎−3(10)1 2𝑎−2(01)1
1 [0𝑎−3(01)1 31𝑎−3(10)1 2𝑎−2(01)1 ]𝑡, 0𝑎−43(01)1 31𝑎−5(10)2 2𝑎−4(01)2
𝑖 [0𝑎−2𝑖−1(01)𝑖 31𝑎−2𝑖−1(10)𝑖 2𝑎−2𝑖(01)𝑖]𝑡, 0𝑎−2𝑖−23(01)𝑖 31𝑎−2𝑖−3(10)𝑖+1 2𝑎−2𝑖−2(01)𝑖+1

𝑘 − 1 [02(01)𝑘−1 312(10)𝑘−1 23(01)𝑘−1 ]𝑡, 013(01)𝑘−1 3(10)𝑘 21(01)𝑘
𝑘 [(01)𝑘 3(10)𝑘 2(01

::
)𝑘 ]𝑡−1,(01)6𝑘+2.

Hence the pre-period is

𝓁 = (𝑘 + 1)(𝑐 + 2𝑎 + 1) − 2(7𝑘 + 2) = (𝑘 + 1)𝑐 + 4𝑘2 − 7𝑘 − 1

and the period is 𝑝 = 2.

Remark 6. One may expect that if SUB(𝑎, 𝑏, 𝑐) is ultimately bipartite, then so is SUB(𝑎, 𝑏, 𝑑) for sufficient
large 𝑑 with 𝑑 ≡ 𝑐 mod (𝑎 + 𝑏). This is not true in general. For example, SUB(3, 11, 13) is ultimately bipartite
but SUB(3, 11, 14𝑡 + 13) has period 14𝑡 + 16, 𝑡 ≥ 1.

Remark 7. Write 𝑎 = 2𝑘 + 1. Consider the four-element subtraction set 𝑆 = {𝑎, 2𝑎 + 1, 3𝑎, 𝑐} with odd
𝑐 > 3𝑎. For 3 ≤ 𝑎 ≤ 25, 𝑐 < 500, we find the following phenomenon.

• If 𝑐 = 4𝑎 + 1, then 𝓁 = 0 and 𝑝 = 5𝑎 + 1.

• If 𝑐 = (4𝑖 + 2)𝑎 − 1 with 1 ≤ 𝑖 < 𝑘, then 𝓁 = (8𝑖 − 1)𝑎 + 2𝑖 − 1 and 𝑝 = 4𝑎.

• Otherwise, SUB(𝑆) is ultimately bipartite.
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